Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 5.482
Filter
Add filters

Year range
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12602, 2023.
Article in English | Scopus | ID: covidwho-20245409

ABSTRACT

Nowadays, with the outbreak of COVID-19, the prevention and treatment of COVID-19 has gradually become the focus of social disease prevention, and most patients are also more concerned about the symptoms. COVID-19 has symptoms similar to the common cold, and it cannot be diagnosed based on the symptoms shown by the patient, so it is necessary to observe medical images of the lungs to finally determine whether they are COVID-19 positive. As the number of patients with symptoms similar to pneumonia increases, more and more medical images of the lungs need to be generated. At the same time, the number of physicians at this stage is far from meeting the needs of patients, resulting in patients unable to detect and understand their own conditions in time. In this regard, we have performed image augmentation, data cleaning, and designed a deep learning classification network based on the data set of COVID-19 lung medical images. accurate classification judgment. The network can achieve 95.76% classification accuracy for this task through a new fine-tuning method and hyperparameter tuning we designed, which has higher accuracy and less training time than the classic convolutional neural network model. © 2023 SPIE.

2.
EACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of System Demonstrations ; : 67-74, 2023.
Article in English | Scopus | ID: covidwho-20245342

ABSTRACT

In this demo, we introduce a web-based misinformation detection system PANACEA on COVID-19 related claims, which has two modules, fact-checking and rumour detection. Our fact-checking module, which is supported by novel natural language inference methods with a self-attention network, outperforms state-of-the-art approaches. It is also able to give automated veracity assessment and ranked supporting evidence with the stance towards the claim to be checked. In addition, PANACEA adapts the bi-directional graph convolutional networks model, which is able to detect rumours based on comment networks of related tweets, instead of relying on the knowledge base. This rumour detection module assists by warning the users in the early stages when a knowledge base may not be available. © 2023 Association for Computational Linguistics.

3.
Tien Tzu Hsueh Pao/Acta Electronica Sinica ; 51(1):202-212, 2023.
Article in Chinese | Scopus | ID: covidwho-20245323

ABSTRACT

The COVID-19 (corona virus disease 2019) has caused serious impacts worldwide. Many scholars have done a lot of research on the prevention and control of the epidemic. The diagnosis of COVID-19 by cough is non-contact, low-cost, and easy-access, however, such research is still relatively scarce in China. Mel frequency cepstral coefficients (MFCC) feature can only represent the static sound feature, while the first-order differential MFCC feature can also reflect the dynamic feature of sound. In order to better prevent and treat COVID-19, the paper proposes a dynamic-static dual input deep neural network algorithm for diagnosing COVID-19 by cough. Based on Coswara dataset, cough audio is clipped, MFCC and first-order differential MFCC features are extracted, and a dynamic and static feature dual-input neural network model is trained. The model adopts a statistic pooling layer so that different length of MFCC features can be input. The experiment results show the proposed algorithm can significantly improve the recognition accuracy, recall rate, specificity, and F1-score compared with the existing models. © 2023 Chinese Institute of Electronics. All rights reserved.

4.
ACM International Conference Proceeding Series ; : 73-79, 2022.
Article in English | Scopus | ID: covidwho-20245310

ABSTRACT

Aiming at the severe form of new coronavirus epidemic prevention and control, a target detection algorithm is proposed to detect whether masks are worn in public places. The Ghostnet and SElayer modules with fewer design parameters replace the BottleneckCSP part in the original Yolov5s network, which reduces the computational complexity of the model and improves the detection accuracy. The bounding box regression loss function DIOU is optimized, the DGIOU loss function is used for bounding box regression, and the center coordinate distance between the two bounding boxes is considered to achieve a better convergence effect. In the feature pyramid, the depthwise separable convolution DW is used to replace the ordinary convolution, which further reduces the amount of parameters and reduces the loss of feature information caused by multiple convolutions. The experimental results show that compared with the yolov5s algorithm, the proposed method improves the mAP by 4.6% and the detection rate by 10.7 frame/s in the mask wearing detection. Compared with other mainstream algorithms, the improved yolov5s algorithm has better generalization ability and practicability. © 2022 ACM.

5.
ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023 ; : 2719-2730, 2023.
Article in English | Scopus | ID: covidwho-20245133

ABSTRACT

The COVID-19 pandemic has accelerated digital transformations across industries, but also introduced new challenges into workplaces, including the difficulties of effectively socializing with colleagues when working remotely. This challenge is exacerbated for new employees who need to develop workplace networks from the outset. In this paper, by analyzing a large-scale telemetry dataset of more than 10,000 Microsoft employees who joined the company in the first three months of 2022, we describe how new employees interact and telecommute with their colleagues during their "onboarding"period. Our results reveal that although new hires are gradually expanding networks over time, there still exists significant gaps between their network statistics and those of tenured employees even after the six-month onboarding phase. We also observe that heterogeneity exists among new employees in how their networks change over time, where employees whose job tasks do not necessarily require extensive and diverse connections could be at a disadvantaged position in this onboarding process. By investigating how web-based people recommendations in organizational knowledge base facilitate new employees naturally expand their networks, we also demonstrate the potential of web-based applications for addressing the aforementioned socialization challenges. Altogether, our findings provide insights on new employee network dynamics in remote and hybrid work environments, which may help guide organizational leaders and web application developers on quantifying and improving the socialization experiences of new employees in digital workplaces. © 2023 ACM.

6.
Applied Economics ; 55(35):4091-4107, 2023.
Article in English | ProQuest Central | ID: covidwho-20245118

ABSTRACT

This paper examines the performance of industries in the trade network in international stock markets during the onset of COVID-19. In general, the value of all industries in G20 countries declines significantly in the pandemic. Stock returns of industries in the central positions of global value chains exhibit remarkable resilience despite the economic hardship caused by COVID-19. This pattern is more pronounced when the disruptions caused by social distancing requirements are considered. We postulate that this is related to the essential services provided by the central industries.

7.
Proceedings - 2022 2nd International Conference on Big Data, Artificial Intelligence and Risk Management, ICBAR 2022 ; : 86-91, 2022.
Article in English | Scopus | ID: covidwho-20244899

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 Related Diseases (COVID-19) is now one of the most challenging and concerning epidemics, which has been affecting the world so much. After that, countries around the world have been actively developing vaccines to deal with the sudden disease. How to carry out more efficient epidemic prevention has also become a problem of our concern. Unlike traditional SIR disease transmission models, network percolation has unique advantages in disease immune modelling, which makes it closer to reality in the simulation. This article introduces the study of SIR percolation network on infection probabilities of COVID-19, and proposes a method to preventing the spread of disease. © 2022 IEEE.

8.
Systems ; 11(5), 2023.
Article in English | Web of Science | ID: covidwho-20244892

ABSTRACT

The COVID-19 outbreak devastated business operations and the world economy, especially for small and medium-sized enterprises (SMEs). With limited capital, poorer risk tolerance, and difficulty in withstanding prolonged crises, SMEs are more vulnerable to pandemics and face a higher risk of shutdown. This research sought to establish a model response to shutdown risk by investigating two questions: How do you measure SMEs' shutdown risk due to pandemics? How do SMEs reduce shutdown risk? To the best of our knowledge, existing studies only analyzed the impact of the pandemic on SMEs through statistical surveys and trivial recommendations. Particularly, there is no case study focusing on an elaboration of SMEs' shutdown risk. We developed a model to reduce cognitive uncertainty and differences in opinion among experts on COVID-19. The model was built by integrating the improved Dempster's rule of combination and a Bayesian network, where the former is based on the method of weight assignment and matrix analysis. The model was first applied to a representative SME with basic characteristics for survival analysis during the pandemic. The results show that this SME has a probability of 79% on a lower risk of shutdown, 15% on a medium risk of shutdown, and 6% of high risk of shutdown. SMEs solving the capital chain problem and changing external conditions such as market demand are more difficult during a pandemic. Based on the counterfactual elaboration of the inferred results, the probability of occurrence of each risk factor was obtained by simulating the interventions. The most likely causal chain analysis based on counterfactual elaboration revealed that it is simpler to solve employee health problems. For the SMEs in the study, this approach can reduce the probability of being at high risk of shutdown by 16%. The results of the model are consistent with those identified by the SME respondents, which validates the model.

9.
Intelligent Automation and Soft Computing ; 37(1):179-198, 2023.
Article in English | Web of Science | ID: covidwho-20244836

ABSTRACT

As COVID-19 poses a major threat to people's health and economy, there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently. In non-stationary time series forecasting jobs, there is frequently a hysteresis in the anticipated values relative to the real values. The multilayer deep-time convolutional network and a feature fusion network are combined in this paper's proposal of an enhanced Multilayer Deep Time Convolutional Neural Network (MDTCNet) for COVID-19 prediction to address this problem. In particular, it is possible to record the deep features and temporal dependencies in uncertain time series, and the features may then be combined using a feature fusion network and a multilayer perceptron. Last but not least, the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty, realizing the short-term and long-term prediction of COVID-19 daily confirmed cases, and verifying the effectiveness and accuracy of the suggested prediction method, as well as reducing the hysteresis of the prediction results.

10.
ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023 ; : 3968-3977, 2023.
Article in English | Scopus | ID: covidwho-20244828

ABSTRACT

The COVID-19 pandemic has caused substantial damage to global health. Even though three years have passed, the world continues to struggle with the virus. Concerns are growing about the impact of COVID-19 on the mental health of infected individuals, who are more likely to experience depression, which can have long-lasting consequences for both the affected individuals and the world. Detection and intervention at an early stage can reduce the risk of depression in COVID-19 patients. In this paper, we investigated the relationship between COVID-19 infection and depression through social media analysis. Firstly, we managed a dataset of COVID-19 patients that contains information about their social media activity both before and after infection. Secondly, We conducted an extensive analysis of this dataset to investigate the characteristic of COVID-19 patients with a higher risk of depression. Thirdly, we proposed a deep neural network for early prediction of depression risk. This model considers daily mood swings as a psychiatric signal and incorporates textual and emotional characteristics via knowledge distillation. Experimental results demonstrate that our proposed framework outperforms baselines in detecting depression risk, with an AUROC of 0.9317 and an AUPRC of 0.8116. Our model has the potential to enable public health organizations to initiate prompt intervention with high-risk patients. © 2023 ACM.

11.
Journal of Statistics and Data Science Education ; 30(2):165-178, 2022.
Article in English | ProQuest Central | ID: covidwho-20244594

ABSTRACT

Statistical literacy is key in this heavily polarized information age for an informed and critical citizenry to make sense of arguments in the media and society. The responsibility of developing statistical literacy is often left to the K-12 mathematics curriculum. In this article, we discuss our investigation of K-8 students' current opportunities to learn statistics created by state mathematics standards. We analyze the standards for alignment to the Guidelines for the Assessment and Instruction in Statistics Education (GAISE II) PreK-12 report and summarize the conceptual themes that emerged. We found that while states provide K-8 students opportunities to analyze and interpret data, they do not offer many opportunities for students to engage in formulating questions and collecting/considering data. We discuss the implications of the findings for policy makers and researchers and provide recommendations for policy makers and standards writers.

12.
ACM International Conference Proceeding Series ; : 419-426, 2022.
Article in English | Scopus | ID: covidwho-20244497

ABSTRACT

The size and location of the lesions in CT images of novel corona virus pneumonia (COVID-19) change all the time, and the lesion areas have low contrast and blurred boundaries, resulting in difficult segmentation. To solve this problem, a COVID-19 image segmentation algorithm based on conditional generative adversarial network (CGAN) is proposed. Uses the improved DeeplabV3+ network as a generator, which enhances the extraction of multi-scale contextual features, reduces the number of network parameters and improves the training speed. A Markov discriminator with 6 fully convolutional layers is proposed instead of a common discriminator, with the aim of focusing more on the local features of the CT image. By continuously adversarial training between the generator and the discriminator, the network weights are optimised so that the final segmented image generated by the generator is infinitely close to the ground truth. On the COVID-19 CT public dataset, the area under the curve of ROC, F1-Score and dice similarity coefficient achieved 96.64%, 84.15% and 86.14% respectively. The experimental results show that the proposed algorithm is accurate and robust, and it has the possibility of becoming a safe, inexpensive, and time-saving medical assistant tool in clinical diagnosis, which provides a reference for computer-aided diagnosis. © 2022 ACM.

13.
Journal of Information Technology & Politics ; 20(3):250-268, 2023.
Article in English | Academic Search Complete | ID: covidwho-20244472

ABSTRACT

Social media platforms such as Twitter provide opportunities for governments to connect to foreign publics and influence global public opinion. In the current study, we used social and semantic network analysis to investigate China's digital public diplomacy campaign during COVID-19. Our results show that Chinese state-affiliated media and diplomatic accounts created hashtag frames and targeted stakeholders to challenge the United States or to cooperate with other countries and international organizations, especially the World Health Organization. Telling China's stories was the central theme of the digital campaign. From the perspective of social media platform affordance, we addressed the lack of attention paid to hashtag framing and stakeholder targeting in the public diplomacy literature. [ FROM AUTHOR] Copyright of Journal of Information Technology & Politics is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

14.
Proceedings of SPIE - The International Society for Optical Engineering ; 12597, 2023.
Article in English | Scopus | ID: covidwho-20244468

ABSTRACT

The ongoing COVID-19 epidemic has had a great impact on social activities and the economy. The usage technical analysis tools to provide a more accurate and efficient reference for epidemic control measures is of great significance. This paper analyzes the characteristics and deficiencies of the existing technical methods, such as regression model, simulation calculation, differential equation and so on. By analyzing past outbreak cases and comparing the epidemic prevention measures of different cities, we discuss the importance of early and timely prevention in controlling the epidemic, and the importance of analyzing and formulating plans in advance. We then make the key observation that the spread of the virus is related to the topology of the urban network. This paper further proposes an epidemic analysis model of the optimized PageRank model, and gives a ranking algorithm for virus transmission risk levels based on road nodes, forming a visual risk warning level map, and applies the algorithm to the epidemic analysis of Yuegezhuang area in Beijing. Finally, more in-depth research directions and suggestions for prevention and control measures are put forward. © 2023 SPIE.

15.
Integrated Communications, Navigation and Surveillance Conference, ICNS ; 2023-April, 2023.
Article in English | Scopus | ID: covidwho-20244358

ABSTRACT

The European Air Transportation Network was significantly impacted by the COVID-19 pandemic, resulting in an unprecedented loss of flight connections. Utilizing a combination of graph representation learning and time series analysis, this paper studies the evolution of both the global connectivity as well as the structure of the European Air Transportation Network from January 2020 to December 2022. Specifically, it finds strong differences in recovery rates for flights across six different market segments. In terms of network structure, the study finds that structural roles that are present in the pre-covid network have seen a loss in performance over the course of the pandemic, but have recovered to pre-covid levels. Using regional changes in structural roles, this study identifies Italy as the region with the strongest increase and the United Kingdom as the region with the strongest decrease in structural role, finding substantial differences in recovery rates per market segment. Lastly, this study pays special attention on the effect of the Russia-Ukrainian war on the European Air Transportation Network. © 2023 IEEE.

16.
ACM International Conference Proceeding Series ; 2022.
Article in English | Scopus | ID: covidwho-20244307

ABSTRACT

This paper proposes a deep learning-based approach to detect COVID-19 infections in lung tissues from chest Computed Tomography (CT) images. A two-stage classification model is designed to identify the infection from CT scans of COVID-19 and Community Acquired Pneumonia (CAP) patients. The proposed neural model named, Residual C-NiN uses a modified convolutional neural network (CNN) with residual connections and a Network-in-Network (NiN) architecture for COVID-19 and CAP detection. The model is trained with the Signal Processing Grand Challenge (SPGC) 2021 COVID dataset. The proposed neural model achieves a slice-level classification accuracy of 93.54% on chest CT images and patient-level classification accuracy of 86.59% with class-wise sensitivity of 92.72%, 55.55%, and 95.83% for COVID-19, CAP, and Normal classes, respectively. Experimental results show the benefit of adding NiN and residual connections in the proposed neural architecture. Experiments conducted on the dataset show significant improvement over the existing state-of-the-art methods reported in the literature. © 2022 ACM.

17.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20244302

ABSTRACT

Healthcare systems all over the world are strained as the COVID-19 pandemic's spread becomes more widespread. The only realistic strategy to avoid asymptomatic transmission is to monitor social distance, as there are no viable medical therapies or vaccinations for it. A unique computer vision-based framework that uses deep learning is to analyze the images that are needed to measure social distance. This technique uses the key point regressor to identify the important feature points utilizing the Visual Geometry Group (VGG19) which is a standard Convolutional Neural Network (CNN) architecture having multiple layers, MobileNetV2 which is a computer vision network that advances the-state-of-art for mobile visual identification, including semantic segmentation, classification and object identification. VGG19 and MobileNetV2 were trained on the Kaggle dataset. The border boxes for the item may be seen as well as the crowd is sizeable, and red identified faces are then analyzed by MobileNetV2 to detect whether the person is wearing a mask or not. The distance between the observed people has been calculated using the Euclidian distance. Pretrained models like (You only look once) YOLOV3 which is a real-time object detection system, RCNN, and Resnet50 are used in our embedded vision system environment to identify social distance on images. The framework YOLOV3 performs an overall accuracy of 95% using transfer learning technique runs in 22ms which is four times fast than other predefined models. In the proposed model we achieved an accuracy of 96.67% using VGG19 and 98.38% using MobileNetV2, this beats all other models in its ability to estimate social distance and face mask. © 2023 IEEE.

18.
2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20244289

ABSTRACT

Post Covid-19 education posed an equally challenging task among teachers and learners. During these times limitation on face-to-face learning and gradual emigration from full online means of instruction had become an issue worth solving. Schools opted to adapt hybrid learning modalities as a means to cope with the learning demands in this era. However, most schools are put on a disadvantage because of the required technologies to support this mode of learning. This research describes an initial design and demonstration of a portable mobile cloud network to support synchronous learning. The system was installed and tested on both a schoolwide and classroom setting. Initial results showed that the proposed system was favorable as an alternative means to hybrid learning. © 2022 IEEE.

19.
Eurasian Journal of Social Sciences ; 11(1):1-11, 2023.
Article in English | ProQuest Central | ID: covidwho-20244252

ABSTRACT

The tremendous growth of tourism in Albania in recent decades, made important the understanding of the role that digital marketing and mobile technology is playing in this field. Tourism in Albania is one of the most important economic sectors of the country, and is growing year after year. It is emphasized that digitalization is a new form of communication between producers and consumers of tourism services, becoming a source of competitive advantages for tourism organizations. The main goal of the study is to give us a clear overview of the use of the Internet, information technologies and digital marketing in Albania. For the realization of this study, we used a methodology that combines primary data with secondary ones. The research was conducted through questionnaires that were sent to Albanian travel agencies via email. The questionnaire contains 17 questions, and was sent to 150 travel agencies, of which 102 agencies responded. Regarding the study, digital marketing plays an important role in improving the image of Albanian tourism throughout the world. It has created facilities in the way of doing marketing and reducing the costs of businesses. Through digital marketing, travel agencies have managed to promote our country online, personalize services and, above all, be closer to customers. The research found that the most effective digital marketing tools used by the agencies are Instagram and Facebook.

20.
2023 9th International Conference on eDemocracy and eGovernment, ICEDEG 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20244243

ABSTRACT

Messaging platforms like WhatsApp are some of the largest contributors to the spread of Covid-19 health misinformation but they also play a critical role in disseminating credible information and reaching populations at scale. This study explores the relationships between verification behaviours and intention to share information to users that report high trust in their personal network and users that report high trust in authoritative sources. The study was conducted as a survey delivered through WhatsApp to users of the WHO HealthAlert chatbot service. An adapted theoretical model from news verification behaviours was used to determine the correlation between the constructs. Due to an excellent response, 5477 usable responses were obtained, so the adapted research model could be tested by means of a Structural Equation Model (SEM) using the partial least squares algorithm on SmartPLS4. The findings suggest significant correlations between the constructs and suggest that participants that have reported high levels of trust in authoritative sources are less likely to share information due to their increased behaviours to verify information. © 2023 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL